N93-25972

The probabilistic neural network architecture for high speed
classification of remotely sensed imagery

Samir R. Chettri
Hughes-STX at NASA/Goddard Space Flight Center
Greenbelt, MD 20771

Robert F. Cromp
Code 930.1
NASA/Goddard Space Flight Center
Greenbelt, MD 20771

Abstract

In this paper we discuss a neural network architecture (the Probabilistic Neural Net or
the PNN) that, to the best of our knowledge, has not previously been applied to remotely
sensed data. The PNN is a supervised non-parametric classification algorithm as opposed to
the Gaussian maximum likelihood classifier (GMLC).

The PNN works by fitting a Gaussian kernel to each training point. The width of the
Gaussian is controlled by a tuning parameter called the window width. If very small widths are
used, the method is equivalent to the nearest neighbour method. For large windows, the PNN
behaves like the GMLC.

The basic implementation of the PNN requires no training time at all. In this respect it
is far better than the commonly used Backpropagation neural network which can be shown to
take O(N®) time for training where N is the dimensionality of the input vector. In addition the
PNN can be implemented in a feedforward mode in hardware. The disadvantage of the PNN is
that it requires all the training data to be stored. Some solutions to this problem are discussed
in the paper.

Finally, we discuss the accuracy of the PNN with respect to the GMLC and the Backprop-
agation neural network (BPNN). The PNN is shown to be better than GMLC and not as good
as the BPNN with regards to classification accuracy.

1 Imntroduction

High performance computers and sophisticated sensors are responsible for the explosive generation
of data for scientific, industrial and commercial uses. NASA faces the same data glut with its current
and future missions (including the Earth Observing System and Tropical Rainfall Measuring Mission
platforms). At NASA’s Goddard Space Flight Center, the Intelligent Data Management group
(IDM), within the Information Science and Technology Office (ISTO), has been investigating and
developing data and information management systems that can handle the archiving and querying
of data produced by Earth and space missions with fast response times. This work has resulted in
an Intelligent Information Fusion System (IIFS) for handling and archiving terabyte-sized spatial

119

PRECEDING PAGE BLANK NOT FILMED

databases; and Scheduler/Planner Under Deadlines (SPUDS) to guarantee that response times are
maintained [CCS92]. Our current data source of applications is remotely sensed images. However,
IIFS and SPUDS are not inherently limited to this data source, having been conceived as general

purpose tools.

IDM’s research into neural networks has been ongoing since 1989 [CHLC89] starting with re-
search into the applicability of the backpropagation paradigm to remotely sensed images. This work
has continued, resulting in comparisons of backpropagation with conventional Gaussian Maximum
likelihood classification [CCB92). Within ITFS/SPUDS, the neural networks act as high speed, low
level image classifiers with higher level domain knowledge being provided by decision trees and
expert systems. The combination of IIFS and SPUDS provides a scientist with the means to access
a database based on image content at varying levels of resolution.

For IDM’s purposes, the data glut problem can be divided into two parts. The first part
deals with efficient characterization of the data and subsequent archival processes. The second
part deals with efficient querying of the data based on platform, content, and spatial and temporal
constraints. This paper will deal with the characterization of satellite images and the attendant
problems. In particular we discuss the pros and cons of the Probabilistic Neural Network (PNN)
with respect to high speed data classification.

In the following text, the PNN is first described. Next, we discuss the advantages of the
PNN with respect to backpropagation neural networks (BPNN) and Gaussian Maximum Likelihood
Classifiers (GMLC). As a way of addressing the shortcomings of the PNN, we introduce Kohonen's
Learning Vector Quantization (LVQ) which helps increase the feedforward speed of the PNN. We
then apply the PNN to an image of the Blackhills in South Dakota and discuss the quality of
the output. We conclude with a summary of the main results of the paper and reveal our future
research plans.

2 The Probabilistic Neural Network (PNN) architecture

The roots of the PNN lie in the histogram evaluation techniques that date back to 1661 ([TT78],
[TK76]). Whereas the histogram uses rectangular boxes and quantizes the data axes, the kernel
method chooses not to quantize the data axes, instead placing a kernel at each data point in
multidimensional space. For an illustration of this process see [Sil86]. In the following discussion,
the density estimates are obtained from a set of n observed data vectors Xy,...,Xn. The actual
density is denoted by f(x) and the estimate of the density by f(x)

The multivariate estimate of density [Sil86] with kernel /' and window width ¢ is written as

- I & (1 o
ix) = g o { L= X0 (1)
The kernel function satisfies
K{x)dx=1. (2)
H:i

Usually the kernel is a unimodal, everywhere positive function. The use of non -positive kernels is
still an open research question.

120

The Gaussian kernel (also discussed in the next section) can be written as
1
E(x) = (2r)"Y? exp(—§xT). (3)

The kernel function and the smoothing parameter are the two choices to be made in the case
of density estimates using the kernel method. Research has shown that the choice of kernel does
not greatly vary the density estimate [Sil86]. All things being equal, it is then desirable to choose
kernels based on their computational properties. We will address this issue in section 2.4,

2.1 Discriminant functions

Given K classes, let f(X | Si) be the probability deunsity function (pdf) associated with the
measurement vector X, given that X is from class k. Let P(Sk) be the a priori probability of class
Si. We can use the maximum a posteriori (MAP) decision rule to identify the class to which X
belongs. It can be stated as follows ([And72]):

Decide X € Sy iff f(X | Si)P(Sk) > f(X | $;)P(S;). j=0,1, -+ M~1,

where the products f(X | Sx)P(Sy) correspond to discriminant functions, and there are A7 classes
for which discriminant functions are defined. As stated, the MAP rule consists of evaluating the
discriminant functions and selecting the maximum as the winner.

Estimating the density function is a key problem in MAP estimation. If the underlying
density of each class were known, the problem would be an easy one. In fact, the Gaussian
Maximum Likelihood Classifier (GMLC) simplifies the problem of density estimation by assuming
that f(X | Sk) is a multi-variate normal pdf whose parameters (the mean vector and the variance -
covariance matrix) can be determined by samples conditioned on class Sk.

The probabilistic neural net (PNN) was designed by Specht [Spe90] using Parzen’s [Par62]
kernel function:

Py ' AT(X _ A
XS = o LS ey | B2) (X = Wl (1)
(2m)1 200 Py = 202
Note that Parzen’s kernel is the same as the Gaussian kernel of equation (3). In equation (4)
Wi, is the it* training pattern from the 0 < kth < M — 1 category, Py is the total number of
training patterns in class k, d is the dimension of the training pattern Wy;, and o is a “smoothing
According to Specht, a small value of ¢ caused the density to have modes at the sites of the training
samples. Increasing o causes smoothing of the surface around the modes. In the limiting case, the
pdf is Gaussian regardless of the true nature of the underlying distribution. This may seem to be
a problem; however, according to Specht, it is not difficult to find a good value of o, and ... the
misclassification rate does not change dramatically with small changes in ¢.”

2.2 PNN implementation details

The PNN can be implemented using a feed-forward network. An overview of the PNN is shown in
Figure 1. There are four layers. The input layer fans out the input d dimensional vector which has

121

to be placed in one of M classes. Each node in the input layer is connected to every node in the
pattern layer and input vector components are transformed by means of a weight W, , connecting
the ¢** input node to the j** pattern node. The pattern layer is subdivided into sets of nodes. Each
set of nodes does the processing for a particular class. Since there are M classes, there are M sets
of pattern nodes. The output of each pattern node set is sent to a node in the summation layer,
thus there are M nodes in the summation layer. Finally, the outputs of the summation layer nodes
are sent to the decision layer which obtains the maximum output Oy, k = 0,..., M — 1, and assigns
the input vector X to class k.

_X-W) T(X-W,))
204

In equation (4) is exponentiated. This product can be written as
XTW — 1 if both input and weight vectors are converted to unit vectors, as shown in Figure
2 (a). After the dot product is completed, 1 is subtracted from the total and this is multipied by
o~% after which the exponentiation is performed. At the end of this step one of the terms in the
sum of equation (4) has been evaluated.

If the input and weight vectors are not converted to unit vectors, then the architecture of
the PNN as shown in Figure 2 (a) can be changed to reflect this. It should be mentioned here that
using unit vectors changes the kernel evaluation from a dot product and two vector subtractions
to a single dot product and a scalar subtraction. The disadvantage to the dot product method is
that magnitude information, that may be useful during the classification process, is lost. On the
other hand if our vectors all contain integers, the kernel evaluation process may be done efficiently
using integer computations and the dot product method dispensed with entirely.

A summation layer node contains an adder that sums up the outputs of all the pattern nodes
in a particular set and then multiplies the output by (er)d—/l?adP: as shown in Figure 2 (b). Thus
the summation layer represents the summing process of equation (4). -

The decision layer obtains the maximum of the summation layer outputs, and the class to
which a given input vector X belongs is finally output.

The PNN is trained by first converting the training exemplars to unit vectors. Next each
connection between the input node and a pattern node is assigned a weight which is nothing but
an element from the unit training vector. Thus the number of pattern layer nodes corresponds to
the number of training vectors and each weight between input and pattern layer nodes corresponds
to an element of a training vector. Once training has been done, the network is ready for use in
feed-forward mode. The only input parameter from the user in feed-forward mode is o. A good
heuristic method for selection o is described in [KF72]. In this method the smoothing parameter is
given by ¢ = (d~'tr[C])1/2N ~2/¢_ Here, C is the covariance matrix estimated from the data, d is
the dimensions of the data, tr is the trace of a matrix, N is the number of samples and 0 < a < 0.5.
Computing C would make the PNN training time identical to the Gaussian maximum likelihood
estimator, thereby eliminating its main advantage. In [MAC192], Radial Basis Functions (of which
PNN’s are a part) are used to reduce the number of hidden nodes by obtaining the covariance C
matrix of samples and also to obtain the widths of the kernel functions. While the RBF approach
of [MAC*92] is useful, we have found that ¢ can take on a reasonably large range of values without
seriously affecting accuracy, hence our adherence to the PNN paradigm. A discussion of the results
pertaining to our choice of ¢ is given in section 3.2.

122

Input Layer

LR Pattern Layer

Summation Layer

A Posteriori

A Posteriori A Posteriori
Probability for Probability for Probability for
class 0 class 1 class M-1

l | |

Decision Layer

Figure 1: Feed forward implementation of Specht’s discriminant analysis method

XOWO x W X, 1W o
J
v Y Outputs from pattern layer
-1
c? 7 4 p
)
'
exp
(a) ()

Figure 2: Details of pattern and summation layers

123

2.3 PNN advantages and disadvantages

In this subsection we discuss the advantages and disadvantages of using PNNs. In particular we
focus on training time, retraining time, robustness to weight modification, computational load and
memory requirements.

Advantages

1. Training time for the PNN is proportional to the total number of data vectors. In back-
propagation the training time is roughly O(d®) [CCB92] where d is the dimensionality of the
input vector. Also, the weights in the resulting backpropagation network do not bear any
relationship to the training data and therefore are difficult to interpret. Depending on the
flavor of the BPNN chosen, there are several parameters whose values have to be selected
through heuristic means. These can affect the accuracy and generalization capability of the
net.

For example, a BPNN of the type described in [HKP91] requires that we randomly initialize
the weights. The learning rate and the momentum are two additional parameters to be
chosen. Different choices of these free parameters lead to different neural networks with
different classification abilities. With the PNN there is only one free parameter o to be
chosen and with the negligible training time, many different nets can quickly be constructed
with different values of ¢ and the best one chosen.

2. Retraining the PNN is easy since the hidden layer can be pruned or enlarged on demand.
When a new data vector is received, it can be inserted as a node in the appropriate position
in the pattern layer, and the weight connections are made from this node to the input layer.
This is an O(d) process and an attractive feature when compared to BPNN, since the BPNN
must be retrained (though not from scratch [SR87]) when new data arrive or when data from
the original training set is removed.

3. The PNN is robust to weight removal. Infact, the weight removal and adjustment is the basis
for the pruned PNN (PPNN). Our studies (which are also backed up by other recent work
[Bur91]) indicate that the number of nodes in the pattern layer can be reduced by considerable
amounts and yet give very accurate results. For further discussion on this see section 3.2. In
contrast, due to the compact nature of the BPNN, weight deletion/node removal may severely
impact classification accuracy.

Disadvantages

1. Since the entire training set is kept (and not an encoded version of it, as in the BPNN), the
size of the hidden layer is very large as compared to the BPNN. This would be a shortcoming
in computing environments where memory is scarce.

2. Processing speed is slower than BPNN since each input vector has to be evaluated over the
entire training set. In a previous publication [CCB92], we have shown that the classification
speed for a single input vector for the BPNN is (O(d?), where d is the length of the input
vector. For the PNN, the speed is O(M Pd?), where M is the total number of classes and P
is the number of exemplars in class Si. On the surface, this would make the PNN and the
BPNN have the same execution time. However, according to Kalayeh and Landgrebe [KL83].

124

for accurate classification Py is proportional to d. Hence, in practice the network would have
a speed that is O(d®).

From our discussion, it is evident that the PNN would be very well suited for exploring
dynamic environments. Such environments are commonplace in many scientific investigations of
data. One of the goals of IDM’s ITFS/SPUDS is the high speed classification of data into discipline
specific indices for potential users of the system. In its computationally inefficient form, the PNN
is incompatible with these goals. In the next section we address this major disadvantage of the
PNN.

2.4 Speeding up feed—forward implementations of the PNN

The major disadvantage of the PNN is that all the training data are retained in the form of weights.
This data can grow extremely large, making feed-forward evaluation of input vectors impossible in
real time. One interesting way to prune the hidden layer is described in [Bur91]. In this paper, the
author suggests that the data in the hidden layer be pruned using the Learning Vector Quantization
algorithm of Kohonen [Koh89]. Unlike [Bur91], where the pruned PNN was applied to simulated
bivariate uniform and Gaussian distributions, we apply it to higher dimensional data from real
distributions. The LVQ method can be implemented as a feed-forward neural network working
in both supervised and unsupervised mode [Sim90]. In the following paragraphs, we give a brief

description of the algorithm in its supervised form. For more details the reader is referred to
[HKPOI1].

In LVQ we are given a set of input vectors X5 where X¥ represents the ith vector from class
Sk, i=1,...P; and Pi is the number of training patterns in class Si. We select M) vectors per
class to represent the Py vectors where My « P.. We choose the minimum M < Py such that
an acceptable level of accuracy is obtained when the Py vectors are replaced by the M) vectors in
feedforward mode. This boils down to a trade off between computational efficiency and accuracy
and will depend on the user’s application. In this network, the initial weight vectors w¥ are
randomly chosen and a training vector is applied to the neural net input. For each weight vector a
set of distances ‘wf - Xf‘ is calculated and the smallest one (denoted by wk) is chosen from this

set. Next we move this weight closer to the input vector by the following update rules:

ko t+a()[XF —wh] if class is correct
AW = { —a(t)[X¥ - wk] if class is incorrect)

In equation (5) a(t) is the learning rate at time (or iteration level) t. The value of aft) decreases
as the number of iterations in the learning process increases. A common choice is a(t) = t7.
The number of iterations is denoted by tmas, and its range is 500 < 0, < 10000. Our practical
experience indicates that choosing t,,., in the range above is sufficient for convergence. In fact,
using ., > 500 did not lead to great increases in accuracy.

Now the key point in the LVQ pruning of the PNN is that M; < P, i.e., the number of
prototype vectors My is much less than the number of vectors P; in the hidden layer, yet gives
an adequate representation of all the Py vectors in that class. Hence, the time for feedforward
classification of input vectors can be decreased, and the memory requirements reduced. We have
performed experiments in pruning the PNN so as to improve the feedforward speed. These results

125

Table 1: Distribution of data, Blackhills, South Dakota

Training | Entire image | Class name
No. of pixels | No. of pixels | USGS - Level 1
(0 453 6676 | Urban
1 478 42432 | Agricultural
2 164 16727 | Rangeland
3 482 194868 | Forested Land
4 0 0 | Water bodies
5 0 0 | Wetland
6 368 1441 | Barren
7 0 0 | Tundra
8 0 0 | Perennial snow and ice

are presented in section 3.2, Table 3 and indicate that pruning the PNN is a viable computational
scheme.

3 Application of the PNN to remote—sensing

In this section we describe the data on which we tested our PNN, discuss the selection process that
we employed for the training and testing data, elaborate upon the training and testing methodology
used, and finally, present results for the basic PNN and the IVQ-pruned version of the PNN.

3.1

The data set that was used for training and testing the PNN is called the Blackhills data set,
generated by the Landsat 2 multispectral scanner (MSS) (see Figure 3). This data set was previously
used to compare backpropagation neural networks with Gaussian maximum likelihood classification
in [CCB92]. The spectral bands are 0.5 - 0.6um (green), 0.6 - 0.7um (red), 0.8 - L.1pm (near—
infrared). These bands correspond to channels 4 through 7 of the Landsat sensors. There are
262, 144 pixels corresponding to a 512 x 512 image size, and each pixel represents approximately
79m x 79m on the ground. The image region covers a range of latitudes from 44°15 to 44°30’
and longitudes from 103°30 to 103°45; the images were obtained in September 1973. The ground
reference data set was also provided in the form of United States Geological Survey level II land
use/land cover data [AHRW76]. Since we were only interested in level T classification, the different
classes were conglomerated into the various higher level classes in the hierarchy; the distribution
of pixels is shown in column three of Table 1. For example, from Table 1 we know that there are a
total of 6676 pixels in the urban class, 453 of which were used for training the PNN.

Description of data set

126

3.2 Training and testing the PNN

The ground reference data set was viewed on a display device to get an idea of the spatial distribu-
tion of the ground reference data pixels. According to [Ric86], a minimum sample size of 60 pixels is
necessary for accurate classification. Also, according to [Cam87], a large number of smaller training
sites should be used rather than a few large ones. Following these recommendations, we formed
training sets from the Blackhills data set. The distribution of training samples is summarized in
column two of Table 1.

The PNN classifier is derived from the training group and the error estimate obtained from
the test group. This method is known as the “holdout” or H method of estimating errors. We
do not use the leaving-one-out method of training and testing as described in [WK89] since this
method is extremely time consuming and only leads to marginally better accuracy [KCG8] in testing
for large data sets (which is the case for us).

Results for testing the trained PNN on the image are shown in the contingency table (Table
4). Each entry (' in the matrix represents the number of times a pixel in class { was put into class
j. Cy; is the number of correct classifications in class 7. In Table 4 the left-hand side set of values
represents the classification results of the Unpruned PNN (UPNN) while the pruned PNN (PPNN)
results are on the right. The percent correctly classified (PCC) for the UPNN is 0.697, while it is
0.737 for the PPNN. While a 4% difference might seem small, for a 512 x 512 image this amounts
to approximately 10,000 additional pixels being correctly classified. The future generation of Earth
orbiting platforms will transmit terabytes to petabytes of data, so small percentage changes in
accuracy of classification will lead to large absolute changes in classification accuracy.

A closer look at Table 4) indicates that for forest and urban land cover classes (categories
0 and 3), the PPNN performs better whereas in the other cases, it is not as good. This can be
explained on the basis that categories 0 and 3 have less spread in their data vectors (i.e., they are
clustered very tightly), hence representing them by a smaller set of vectors leads to no degradation
in classification ability. However the samples of the other classes (1, 2, 6) have a larger in—class
variability and hence their multidimensional spatial clusters are not compact leading to poorer
representation by a smaller set of vectors.

To study the change in the classification ability of the UPNN with o, we varied ¢ in incre-
ments of 2 from 2 through 12, with the entire training set being used. The results are presented in
Table 2. The results indicate that there is some variability in the classification with ¢ and that as
o grows larger, the UPNN PCC tends toward the Gaussian Maximum Likelihood Estimate with
PCC = 0.653 as discussed in [CCB92].

Another test that we performed was to see the variability of the neural net accuracy as we
changed the number of hidden nodes in the PPNN. In this test, ¢ = 4 since that was the case for
which we got maximum PCC in the unpruned PNN. These results are shown in Table 3. We found
that as the number of nodes increased there was a general increase in the accuracy of the PPNN.
The four node case is an anomaly, since some classes were classified well while other classes were
classified extremely poorly (to the extent of having less than 25 pixels put in the rangeland class.
i.e., about 0.1% of the total number of pixels).

127

Groups
& 1 Agric.
@ 2 Rage
@ 3 Forest
@ 6 Barren

Figure 3: Ground reference data for the Blackhills image

Table 2: Variation of PCC with o

a 24 6 8 10 12
PCC | 0.677 | 0.697 | 0.685 | 0.674 | 0.670 | 0.667

Table 3: Variation of PCC with number of nodes/class

nodes/class 4 10 20 40 80
PCC | 0.741 | 0.720 | 0.721 | 0.737 | 0.742

128

Groups
&8 0 Urban
& 1 Agric.
@8 2 Range
@ 3 Forest
@ 6 Barren

Figure 4: PNN classified Blackhills dataset

Table 4: Contingency table for PNN; Raw PNN on left with 0 = 4 (PCC = 0.697); PNN-LVQ
combination on right with ¢ = 4 (PCC = 0.737)
0 1 2 3 6 | Total pixels 0 1 2 3 6
0] 0.410 0.165 0.228 0.153 0.044 6623 | 0.509 0.090 0.147 0.172 0.083
1| 0.162 0.418 0.378 0.035 0.007 41954 | 0.215 0.09 0.147 0.172 0.083
2| 0.110 0.286 0.532 0.071 0.002 16263 | 0.114 0.245 0.381 0.129 0.132
3| 0.009 0.064 0.139 0.785 0.003 194386 | 0.010 0.070 0.041 0.861 0.018
6| 0.196 0.118 0.128 0.177 0.381 1073 | 0.257 0.065 0.056 0.531 0.088

129

4 Concluding remarks and future work

In this research, we have described the Probabilistic Neural Network (PNN) and have applied it to
remotely sensed imagery. The accuracy obtained Dy the PNN is better than the Gaussian Maximum
Likelihood Classifier (GMLC) and not as good as the Backpropagation Neural Network (BPNN).
On the other hand, the training time in the PNN is very small when compared to the other two
methods. In addition the network is robust to weight changes and has very small retraining time,
making it highly suitable for highly variable and dynamic environments. A modified version of the
PNN (LVQ-PNN or PPNN) was discussed and compared with the raw PNN. For the chosen data
set, the PPNN performed better than the raw PNN.

Future work includes additional research on the PNN and using the PNN in applications,
as described next.

4.1 Planned extensions to the PNN

As has already been discussed, it is sensible to automate the pruning of the PNN. In this process
the number of nodes in each class would be allowed to grow or decrease independently of each other
such that the PCC per class would be optimized.

In addition, the PNN algorithms described throughout the paper are all readily adaptable
for a parallel architecture implementation, most likely on a machine such as the MasPar MP-1, a
16,384 processing element SIMD machine.

4.2 Incorporation of the PNN into a metastrategy

The Intelligent Data Management group has developed a number of automatic characterization

algorithms drawn from backpropagation networks, PNN, Adaptive Resonance Theory (ART) net-
works [CG87], decision trees, Fourier analysis and wavelet theory. Each of these methods has its
own unique strengths and weaknesses, and there are cases where one may falter while another
excels. We plan to attempt to develop a metastrategy that draws on its knowledge of each of these
techniques to produce a hybrid characterization algorithm that performs at least as well as any
single one of these components [Fin90].

5 Acknowledgements

A number of people within and without the IDM group have contributed to this work. The authors
would like to thank William J. Campbell, George Fekete, Robb Lovell and Nicholas Short, Jr. for
their help during this research.

References

[AITIRWT76] J. R. Anderson, E. E. Hardy, J. T. Roach, and R. E. Witmer. A land use and land cover
classification system for use with remote sensor data. Geological Survey Professional
Paper 964, United States Government Printing Office, Washington, D.C., 1976.

130

[And72]

[Bur91]

[Cam87]
(CCBY2]

[CCS92)

[CG87)

[CHC89]

[Fin90]

[HKP91]

[KC68]

[KF72]

[KL83)]

[Koh89)
[MAC*92]

[Par62]

H. C. Andrews. Introduction to Mathematical Techniques in Pattern Recognition.
Wiley-Interscience, New York, 1972.

P. Burrascano. Learning vector quantization for the probabilistic neural network. JEEL
Trans. on Neural Networks, 2(4):458-461, 1991.

J. B. Campbell. Introduction to Remote Sensing. Guilford Press, New York, 1987.

S. R. Chettri, R. F. Cromp, and M. Birmingham. Design of neural networks for classifi-
cation of remotely sensed imagery. In 1992 Goddard Confercnce on Space Applications
of Artificial Intelligence, pages 137-149. National Aeronautics and Space Administra-
tion, 1992.

R. F. Cromp, W. J. Campbell, and Jr. Short, N. M. An intelligent information fusion
system for handling the archiving and querying of terabyte-sized spatial databases. In
International Space Year Conference on Earth and Space Science Information Systems.
American Institute of Physics, 1992,

G. Carpenter and S. Grossberg. A massively parallel architecture for a sell organizing
ART architecture in a nonstationary world. Computer Vision, Graphics and hnage
Processing, 37:54-115, 1987.

W. J. Campbell, S. E. Hill, and R. F. Cromp. Automatic labeling and characterization
of objects using artificial neural networks. Telematics and Informatics, 6(3-1):259 271,
1989.

N. V. Findler. Contributions to a Computer-Based Theory of Stralcgics. Springer-
Verlag, Berlin, 1990.

J. Hertz, A. Krogh, and R. Palmer. Introduction to the Theory of Ncural Computation.
Addison-Wesley, Redwood City, California, 1991.

L. Kanal and B. Chandrasekaran. On dimensionality and sample size in statistical
pattern recognition. In Proc. Nat. Electron. Conf., pages 2-7, 1968.

W. L. G. Koontz and K. Fukunaga. Asymptotic analysis of a nonparametric estimate
of a multivariate density function. IEEE PAMI, 21:967--974, 1972,

H. M. Kalayeh and D. A. Landgrebe. Predicting the required number of training
samples. IEEE Trans. on Patt. Anal. and Mach. Intelligence, 5:664-667, 1983,

T. Kohonen. Self-Organization and Associative Memory. Springer Verlag, Berlin, 1989.

M. T. Musavi, W. Ahmed, K. I. Chan, K. B. Faris, and D. M. Tummels. On the
training of radial basis function classifiers. Neural Networks, 5:595- 603, 1992.

E. Parzen. On estimation of a probability density function and mode. _Annals of
Mathematical Statistics, 33:308-319, 1962.

131

[Ric86)

[Silg6]

[Sim90]

[Spe90]
[SR87]

[TK76]

[TT78]

[WK89]

J. A. Richards. Remote Sensing Digital Image Analysis, en Introduction. Springer—
Verlag, Berlin, 1986.

B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and
Hall, London, 1986.

P. K. Simpson. Artificial Neural Systems: Foundations, Paradigms, Applications, and
Implementations. Pergammon Press, New York, 1990.

D. Specht. Probabilistic neural networks. Neural Networks, 3:109-118, 1990.

T. J. Sejnowski and C. R. Rosenberg. Parallel networks that learn to pronounce English
text. Complez Systems, 1:367-372, 1987.

M. E. Tarter and R. A. Kronmal. An introduction to the implementation and theory
of nonparametric density estimation. The American Statistician, 30:105-112, 1976.

R. A. Tapia and J. R. Thompson. Nonparametric Probability Density Estimation. Johns
Hopkins University Press, Baltimore, 1978.

S. M. Weiss and I. Kapouleas. An empirical comparison of pattern recognition, neural
nets, and machine learning classification methods. In Eleventh Int. Joint Conference on
Artificial Intelligence, pages 781-787. American Association of Artificial Intelligence,
1989.

132

